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A Non-parametric Survival Estimate After Elimination of a Cause of Failure
 (Penganggaran Kemandirian Tak-Berparameter Selepas Penghapusan Punca Risiko)
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Abstract

In competing risks analysis, the primary interest of researchers is the estimation of the net survival probability (NSP) if a 
cause of failure could be eliminated from a population. The Kaplan-Meier product-limit estimator under the assumption 
that the eliminated risk is non-informative to the other remaining risks, has been widely used in the estimation of the NSP. 
The assumption implies that the hazard of the remaining risks before and after the elimination are equal and it could be 
biased. This paper addressed this possible bias by proposing a non-parametric multistate approach that accounts for an 
informative eliminated risk in the estimation procedure, whereby the hazard probabilities of the remaining risks before 
and after the elimination of a risk are not assumed to be equal. When a non-informative eliminated risk was assumed, 
it was shown that the proposed multistate estimator reduces to the Kaplan-Meier estimator. For illustration purposes, 
the proposed procedure was implemented on a published dataset and the change in hazard after elimination of a cause 
is investigated. Comparing the results to those obtained from using the Kaplan-Meier method, it was found that in the 
presence of (both constant and non-constant) informative eliminated risk, the proposed multistate approach was more 
sensitive and flexible.

Keywords: Competing risks; Kaplan-Meier estimator; latent-failure-time approach; multistate approach; net survival 
probability

Abstrak

Dalam analisis risiko bersaing, minat utama penyelidik ialah penganggaran kebarangkalian kemandirian bersih 
(NSP) sekiranya punca risiko boleh dihapuskan daripada satu populasi. Penganggar had-hasil darab Kaplan-Meier, 
dengan andaian bahawa punca risiko yang dihapuskan adalah tidak bermaklumat kepada punca risiko yang lain, telah 
digunakan secara meluas dalam penganggaran NSP. Andaian ini membawa implikasi bahawa kadaran bahaya baki 
risiko sebelum dan selepas penghapusan adalah sama dan ia mungkin tak saksama. Kertas ini menangani kemungkinan 
ketaksamaan ini dengan mencadangkan suatu pendekatan multi-keadaan tak-berparameter yang mengambil kira risiko 
dihapus yang bermaklumat dalam prosedur penganggaran, dengan kebarangkalian bahaya bagi risiko lain sebelum 
dan selepas penghapusan suatu risiko tidak diandaikan sama. Apabila risiko dihapus diandaikan tak bermaklumat, 
ditunjukkan bahawa penganggar multi-keadaan yang dicadangkan menurun kepada penganggar Kaplan-Meier. Bagi 
tujuan illustrasi, prosedur yang dicadangkan dilaksanakan pada satu set data yang telah diterbitkan dan perubahan 
kadar bahaya selepas penghapusan suatu risiko disiasat. Membandingkan keputusan yang diperoleh dengan keputusan 
daripada kaedah Kaplan-Meier, didapati bahawa dengan kehadiran risiko dihapus yang bermaklumat (malar dan bukan 
malar), pendekatan multi-keadaan yang dicadangkan adalah lebih peka dan lebih lentur.

Kata kunci: Kebarangkalian kemandirian bersih; pendekatan masa-risiko-terpendam; pendekatan multi-keadaan; 
penganggar Kaplan-Meier; risiko bersaing

INTRODUCTION

Competing risks survival analysis is a statistical tool for 
analyzing time-to-event (failure/death) data in the presence 
of more than one possible cause of failure (multiple events) 
and each cause is known as a competing risk. In the setup, 
the risks react simultaneously on subjects of a population 
and the occurrence of a cause of failure precludes the 
occurrence of other risks of failure (Gooley et al. 1999). 
Competing risks situations occur in many areas of research 
such as epidemiology, engineering, medical research and 
actuarial science. 

	I n competing risks analysis, a crude probability is the 
probability of failure given that all risks are acting together. 
It arises directly from observations of the actual situation 
and can be estimated directly from the original competing 
risks data. However, a net probability is the probability of 
failure from the other remaining causes given that a cause is 
eliminated. It is not observable since this quantity arises only 
in an assumed hypothetical situation. (Chiang 1968). Thus, 
a further assumption is needed to get an indirect estimate.
	 One of the main interests in competing risks study is 
the estimation of the net survival probability (NSP) from 
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the remaining risks, after a cause of failure is eliminated 
from a population study (Agrawal et al. 2009; Dhar et al. 
2008; Farley et al. 2001; Klein 2010; Ma & Krings 2008; 
Mathew & Pandey 2002). It helps to answer the important 
research question of what would happen to the overall 
survival rate of a defined population if a cause of failure 
in the population is eliminated, thus allowing a researcher 
to predict the impact of an elimination of a cause on the 
survival and hazard rate. Historically, the estimation of the 
survival rate of a population if smallpox was eliminated 
as a cause was done by Bernoulli in 1760 (David & 
Moeschberger 1978; Dietz & Heesterbeek 2002). 
	I n competing risks survival analysis, formulation of 
the NSP can be done by the traditional latent-failure-times 
(LFT) approach or the conventional multistate Markov 
method. However, the NSP cannot be expressed in terms 
of the cause-specific hazard function (crude hazard) and 
is therefore, non-identifiable (Kalbfleisch & Prentice 
2002). As an elimination involves hypothetically, the non-
observable NSP, it is thus unestimable without additional 
assumptions (Crowder 1994; Tsiatis 1975). Moreover, 
since the observable failure time, T, is only the minimum 
of the failure times of m causes, i.e. T = min{T1, T2, …, Tm}  
for each individual, any assumptions being made cannot 
be verified or tested experimentally based on competing 
risks data. 
	 The estimation of the NSP has thus, become one of the 
main problems in competing risks analysis (Kalbfleisch 
& Prentice 2002; Prentice et al. 1978) and to date, few 
literatures on the problem can be found as more focus is 
being given to observable (crude) quantities. Discussions 
on the non-identifiability issues and estimation of non-
observable probabilities problems can be found in Crowder 
(2001), Gail (1975), Kalbfleisch and Prentice (2002), 
Prentice et al. (1978) and Tsiatis (1975). 
	 The issue of non-identifiability can be resolved and 
the NSP made identifiable only with some additional 
unverifiable assumptions. The most common additional 
assumption is that the eliminated cause is independent of 
the remaining causes or equivalently, that the elimination 
of a cause of failure does not provide any information (non-
informative) to the NSP. The well-known Kaplan-Meier 
product limit estimator (KMPLE) (Kaplan & Meier 1958) 
which involves non-informative censoring (eliminated 
risk), works under the assumption of equal hazard before 
and after elimination. However, it has been argued by 
many researchers (Elandt-Johnson & Johnson 1980; Gail 
1975, 1982; Kalbfleisch & Prentice 2002; Lawless 2003; 
Prentice et al. 1978) that even under an independent risks 
mechanism, there might be some information provided by 
the eliminated risk to the process to cause a change in the 
hazards after the elimination. 
	 The objective of this paper was to propose a procedure 
that takes informative eliminated risk (IER) into account 
for estimating the NSP. The next section shows how the 
traditional LFT approach and the existing multistate Markov 
method are used in the formulation of the NSP, followed 
by the estimation procedure of the NSP with the KMPLE. 

Section three gives an alternative estimation procedure 
of the NSP using the proposed multistate approach, based 
on the argument of unequal hazards after the elimination 
of a cause of failure. The procedure shows how IER is 
being incorporated into the estimation process. It is an 
extension of the approach by Islam (1994) on estimating 
the survival probability in the presence of informative 
censoring. In section four, an investigation in the change in 
the hazard probabilities under different constant and non-
constant IER situations is carried out. The estimated results 
obtained from using the proposed multistate approach are 
summarized in the last section.

Formulation and estimation of the net 
survival probability

Generally, the two approaches in the formulation of the net 
survival probability (NSP): the latent-failure-times (LFT) 
approach and the multistate Markov approach are different 
in their formulation, but similar in their interpretations. 
By the LFT approach, the m latent failure times of all 
existing risks, denoted as T1, T2, …, Tm, are modeled and 
a joint distribution of the survival function, S(t1, …, tm) 

 
is 

assumed. By the multistate method, competing risks are 
modeled as a simple Markov process without consideration 
of the latent death times. However, without the modeling 
of S(t1, …, tm), the assumption used in the conventional 
multistate Markov method is no different than those used 
in the independent LFT model. Both the independent LFT 
model and the conventional multistate Markov model 
assume that the elimination of a cause reduces the hazard 
of only the cause to zero while leaving the hazards of the 
other causes unchanged. This implies that the hazard of 
each uneliminated risk are equal in two different set of 
conditions (before and after elimination of a cause).

The Latent-failure-time Approach

For simplicity, only three risks are considered. Assumed 
that each identically and independently distributed 
individual in a population is exposed to potential risks of 
failure j (or cause j), denoted as Cj, j =1, 2, 3. Let random 
variable Tj correspond to each possible failure time due 
to Cj. The observable quantity T is the minimum time to 
failure among the LFT, that is, T = min{T1, T2, T3} 

 
and 

throughout the study, only one cause of failure would 
happen to a subject, at the most.
	 We define the multivariate lifetime distribution or the 
joint distribution of the LFT by the joint survival function, 
that is:

	 S1,2,3(t1, t2, t3) = P(T1 > t1, T2 > t2, T3 > t3).	 (1) 

	 The overall survival function of T in the presence of 
all causes is then defined as S(t) = P(T > t) = S1,2,3(t,t,t), 
with the corresponding overall hazard function given by 
h(t) = (–dS(t)/dt)/S(t). From (1), the crude cause-specific 
hazard (CSH) of Cj is derived as:
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	 hj(t) =    j = 1,2,3,	 (2)

where h(t) = Σjh
j(t), j = 1,2,3. The CSH is the instantaneous 

rate of failure from Cj when all three causes are operating 
simultaneously in the population. It is a basic estimable 
crude quantity in a competing risks framework and 
functions in terms of CSH are also estimable (Kalbfleisch 
& Prentice 2002). For example, the overall survival 
probability of T in terms of CSH, is given by: 

	 S(t) =  	 (3) 

and the crude cause-specific cumulative incidence function 
(CSCIF) in terms of CSH, is:

	 Fj(t) =     j = 1,2,3.	 (4)

	 The CSCIF is the probability of failure from cause 
Cj by time t. Functions which are not in terms of CSH 
are inestimable (non-identifiable) without additional 
assumptions; the NSP is an example of such a function.
	 Assume a hypothetical situation where a cause of 
failure say, cause 1 (C1), was eliminated. By the LFT 
approach, the formulation of the NSP will assume that the 
elimination of C1 is equivalent to letting the crude hazard of 
C1 equals to zero (i.e. h1(t) = 0), without altering the hazard 
rate of the remaining uneliminated causes (Elandt-Johnson 
& Johnson 1980; Gail 1975; Hougaard 2000; Kalbfleisch 
& Prentice 2002; Lawless 2003; Prentice et al. 1978). To 
derive the NSP under the LFT model, the following three 
assumptions were made (Gail 1982): 

AI: A structure for joint survival distribution S1,2,3(t1, t2, 
t3) is assumed. AII: The effect of eliminating a risk can 
be expressed in terms of S1,2,3(t1, t2, t3) in which it is to 
nullify the corresponding argument of S1,2,3(t1, t2, t3). AIII: 
Elimination mechanism will only have effect as in AII 
without otherwise altering S1,2,3(t1, t2, t3).

	 Assumptions AII and AIII are equivalent to assuming 
that the effect of eliminating Cj is just to nullify the 
corresponding crude hazard, hj(t) without altering the 
other hazards. The inappropriateness of assumptions 
AI-AIII in practical problems has been argued in many 
literatures (Cornfield 1957; Crowder 1994; Elandt-Johnson 
& Johnson 1980; Gail 1975, 1982; Hougaard 2000; 
Kalbfleisch & Prentice 2002; Klein & Moeschberger 1987; 
Lawless 2003; Prentice et al. 1978; Putter et al. 2007; Slud 
& Byar 1988). 
	 Define T2,3•1 = min{T2,T3} as the time to failure in the 
hypothetical situation that C1 has been eliminated. Under 
AI-AIII, define the NSP from C2 and C3,

	 S2,3•1(t) = S1,2,3(0,t2,t3)⏐t2 = t3 = t.	 (5)

The net CSH of risk j (j = 2, 3) is then derived as:

	    j = 2,3.	 (6)

	I n the case when the LFT of C2 and C3 are independent 
of C1, it follows from (2) and (6) that the net CSH of risk 
j (j = 2,3) is equal to its corresponding crude CSH (Tsiatis 
2005), that is:

	 	 (7)

	 From (7), the overall net hazard after the elimination 
of C1, is then obtained as = Σj=2,3 = Σjh j(t). 
In terms of the crude CSH, the NSP as given in (5), can be 
written as: 

	 S2,3•1(t) = exp 
		
		  = exp     j = 2,3.	 (8)

	 Comparing formulations (3) and (8), it can be seen 
that the overall net hazard is simply the sum of the crude 
hazards of the remaining uneliminated causes. The 
elimination of C1 just nullifies hazard h1(t) without altering 
hazards h2(t) and h3(t). However, the condition is a stronger 
assumption than the statistically independent assumption 
since even when risks react independently, h2(t) and h3(t) 
might be altered in several other ways.

The Conventional Multistate Markov Formulation

A multistate Markov model is an alternative method to 
the formulation of a competing risks problem (Aalen et al. 
2008; Andersen et al. 2002; Chiang 1968; Kalbfleisch & 
Prentice 2002). It does not involve potential failure times 
to each cause of death and a hypothetical failure time is not 
assumed for each cause of death of each individual. Figure 
1 shows a competing risks multistate model consisting of 
four possible states in a simple Markov chain. There are 
one transient (survivor or alive) state and three absorbing 
(death) states corresponding to three possible causes of 
death for each Cj, j ∈ J = {1,2,3}. Transitions are possible 
only from the survivor state (state 0) to the death states 
(state j). 
	 Define the transition intensity from state 0 to a state 
j ∈ J at time t by: 

(9) 

which is the crude CSH function, h j(t). Define the transition 
probability hP j(s, t) as the probability of being in state 
j at time t, given that the process was in state h at time 
s. Therefore, 0P0(0, t), the state occupation (survival) 
probability at time t, is exactly S(t), i.e.

	 0P0(0,t) = exp     j ∈ J.	 (10)
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	 The transition probability from state 0 to state j at 
time t is equivalent to the CSCIF, Fj(t), defined in (4). It is 
the survival probability at a time prior to t, multiply by the 
conditional failure probability from Cj in a small interval 
(t, t + ∆), (� 0h j(t)∆):

	 0Pj(0, t) = (0, u) 0h j(u)du,      j ∈ J.	 (11)

	I n a competing risks multistate model, the estimation 
of the survival probability after an absorbing state is 
eliminated (the NSP), is of interest. Hoem (1969) studied 
the process after some possible transitions were eliminated 
and introduced the terminology of partial transition 
probability in a partial Markov process. An example of a 
partial Markov process is the competing risks model where 
a cause has been eliminated and its cause-specific transition 
intensity is replaced by ‘0’ (Andersen et al. 1993). 
	 By the Markov formulation, the transition intensity 
of uneliminated state j is assumed unchanged after 
the elimination of an absorbing state. For example, 
elimination of a state, say state 1 in a three competing risks 
situation, where only states 2 and 3 are present, we have 

 
 
for j = 2, 3. The NSP after elimination of 

state 1 (C1) is given by:

	   j = 2,3,	 (12)	

where the transition intensity of eliminated state 1 is 
replaced by zero (0h1(t) = 0) and the transition intensities 
of uneliminated states j = 2,3 remain unchanged (Andersen 
et al. 1993; Gail 1982). Formulation (12) implies that the 
net hazard is equal to the crude hazard in the modeling 
of the NSP, similar to what is implied by (8). Thus, the 
conventional Markov formulation does not solve the 
classical competing risks problem as it is equivalent to the 
independent LFT model (Gail 1982; Hougaard 2000).

The Product Limit Estimator

The non-parametric estimation of the NSP (8) using the 
Kaplan-Meier product limit estimator (KMPLE) is carried 
out under the assumption that the eliminated cause C1 is a 
non-informative censoring observation (non-informative 
eliminated risk) at all the observed times, the remaining 
causes C2 and C3 are grouped together as a single cause with 
a similar failure pattern (Andersen et al. 1993; Gail 1982; 
Kaplan & Meier 1958; Tsiatis 2005). Suppose the observed 
failure times ti are ordered as t1 < t2 < …. The KMPLE of the 
NSP at times beyond time t, after the elimination of C1 is 
given by (Kaplan & Meier 1958):

	

	        j = 2,3,	 (13)

where dji is the number of individuals who fail from cause 
Cj at time ti and ni is the number of individuals at risk at a 
time just prior to time ti. 

	 Alternatively, we can estimate the NSP by using the 
following Nelson-Aalen estimator for the cumulative 
CSH:

	 	 (14)

where its increment, , is the empirical hazard 
estimate of   at time ti (Davis & Lawrance 
1989; Lawless 2003). From the Nelson-Aalen estimator , 
the estimated NSP of is given by:

	
	     j = 2,3.	 (15)

	 Since  for small Σjdji/
ni, estimator (15) is an approximate of the KMPLE (13). 
Thus, as the sample size increases, the KMPLE approaches 
a continuous distribution. 

The proposed multistate approach

This section shows the proposed multistate approach to 
estimating the net survival probability (NSP) after the 
elimination of a cause. The procedure is an extension of 
the approach by Islam (1994), whereby a competing risk 
that is to be eliminated is treated as a random censoring 
observation. Consider n number of subjects under study 
at the beginning time to. For simplicity sake, assume there 
are three risks, j = 1, 2, 3  that react simultaneously on any 
individual under study, in the absence of censoring. The 
procedure can be extended to cases with m causes with 
or without censoring, without loss of generality. Given a 
hypothetical situation that cause C1 has been eliminated, 
we are interested in estimating the NSP from the remaining 
causes. 
	 Consider a time interval [0, t] where at each time point  
ti ∈ [0,t], before the elimination of causes, an individual 
(alive prior to the time point) is in one of the following four 
possible outcomes (or states) (Figure 1): alive as survivor; 
fails from cause 1 (C1); fails from cause 2 (C2) or fails from 
cause 3 (C3). 
	 After the elimination of cause C1, those individuals 
who are saved from C1 failure are called cause 1-survivors 
and are expected to fail from either cause C2 or C3 or remain 
alive. Overall, each individual in this hypothetical situation 
has six expected outcomes (or can be in six possible states) 
(Figure 2): alive as survivor; fails from cause 2 (C2); fails 
from cause 3 (C3); saved from eliminated cause 1 (C1) and 
survives as survivor (cause 1-survivor); cause 1-survivor 
fails from cause 2 (C2) or cause 1-survivor fails from cause 
3 (C3). 
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	 Outcomes (i), (ii) and (iii) are observable but outcomes 
(iv), (v) and (vi) are unobservable. However, an indirect 
estimation is possible with some assumptions. 
	 Consider an observed survival time point ti, given 
that an individual has survived up to a time prior to ti. 
Denote:
ShC2(ti) and ShC3(ti) as the conditional probability of 
transiting from the survivor state to C2 and C3 failure states, 
respectively;
ShS1(ti) as the conditional probability of transiting from the 
survivor state to cause 1-survivor state after the elimination 
of C1 (the hazard probability), i.e. ShS1(ti) = ShC1(ti) since 
all individuals saved from C1 is assumed to be the cause 
1-survivor;
S1hC2(ti) and S1hC3(ti) as the conditional probability of 
transiting from cause 1-survivor state to C2 and C3 failure 
states, respectively.

	 Let SS(t) and SS1(t) be the survival probability in the 
survivor state and cause 1-survivor state, respectively. 
Assuming t0 = 0, we have SS(0) = 1 and SS1(0) = 0. Assume 
that after the elimination of C1, a cause 1-survivor can 
only fail at the next observed failure time point when the 
individual enter the cause 1-survivor state. For the time 
interval [0,t], let SFCj(t), j = 1,2,3 be the probability of 
failure from Cj at a survivor state by time t (discrete type 
CSCIF as defined in and ): 

	 SFCj(t) = (ti)S
S(ti

–)     j = 1,2,3,	 (16)

where SS1(ti
–) is the probability of surviving at a survivor 

state at time prior to ti. Let S1FC2(t) and S1FC3(t) be defined 
as the hypothetical probability of failure from C2 and C3, 
respectively, at cause 1-survivor state by time t:
 
	 S1FCj(t) = (ti)S

S1(ti
–)   j = 2,3,	 (17)

Fails from cause 1, C1
(State 1)

Fails from cause 2, C2
(State 2)

Fails from cause 3, C3
(State 3)

Survivor
(State 0)

FIGURE 1.  A competing risks four states model

Survivor

Cause 1-Survivor 
(who are saved from 

cause 1, C1)

Fails from cause 2, C2

Fails from cause 3, C3

Fails from cause 2, C2

Fails from cause 3, C3

Observable

Unobservable

Figure 2. The multistate (six states) relationship situation after elimination of C1
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where SS1(ti
–) is the probability of surviving at cause 

1-survivor state at time prior to ti. 
	 From Figure 1, it can be seen that the (crude) 
probability of surviving in the interval [0,t] at the survivor 
state is,

	 SS(t) = 1 – SFC1(t) – SFC2(t) – SFC3(t).	 (18)

	 The probability of surviving in the interval [0,t] at 
cause 1-survivor state is:
	

	 SS1(t) = SFC1(t) – S1FC2(t) – S1FC3(t).	 (19)

	I n (18), SFC1(t) represents the probability of failure from 
C1 before its elimination, while in (19), SFC1(t) represents 
the probability of being saved from eliminated C1. The 
NSP after the elimination of C1 during the interval [0, t] is 
therefore, the sum of two types of survivor probabilities 
given in (18) and (19), i.e.,

	 S2,3•1(t)	= SS(t) + SS1(t)

		  = 1 – SFC2(t) – SFC3(t) – S1FC2(t) – S1FC3(t).	
	 (20)

From (16) and (17), the NSP of is therefore: 

	 S2,3•1(t) =	 1 – SS(ti
–)

	
		  –  SS1(ti

–),   j = 2,3	 (21)

	 The S1hCj(ti) in (21) are non-observable and thus, only 
indirectly estimate from observed quantities, i.e. ShCj(ti). 
	 The assumption of non-informative eliminated risk 
from the KMPLE implies that the eliminated risk do not 
provide any information to the survival probability and that 
the conditional probability of failure (from C2 and C3) is 
the same in both the actual survivor and cause 1-survivor 
states (i.e. S1hCj(ti) = ShCj(ti), j = 2,3. The results from making 
such an assumption might, however, be biased due to the 
complexity of some practical real problem. Thus, there is 
a need to account for the possibility of unequal probability 
of failure at the actual survivor state and cause 1-survivor 
state, after the elimination of C1. 
	 The possibility of a bias is addressed in the proposed 
procedure by the assumption that the conditional 
probability of failure (from C2 and C3) at the actual survivor 
state and cause 1-survivor state, are proportional to each 
other at each observed time point, i.e. S1hCj(ti) ∝ ShCj(ti), j 
= 2,3 through an adjustment factor. The idea, which is an 
extension of Islam’s (1994) work, makes the procedure 
of estimating the NSP, after the elimination of C1, more 
flexible. 
	 Letting ai and bi be adjustment factors at the ith time 
point, we have:

	 S1hC2(ti) = ai
ShC2(ti) and S1hC3(ti) = bi

ShC3(ti).	 (22)
	

From (21) and (22), we obtain:

	 S2,3•1(t) = 1	– SS(ti
–)

		  – SS1(ti
–)

		  – SS1(ti
–).	 (23)

	 The adjustment factor measures the extent of the 
effect of a specific elimination on deaths among the 
hypothetical survivors at each lifetime. Its value may be 
varied at different time points and/or for each eliminated 
risk, depending on the researcher’s need or background 
information of the process under study. Thus, it can take 
on any positive value or it can be zero.

Estimation of the Net Survival Probability

The transitions of states at each time ti in the survivor 
state, before the elimination of any causes, follow a 
multinomial distribution. In the absence of censoring, the 
general form of the likelihood function for a multinomial 
distribution is:

	 L α Πj 
ShCj(ti)

dji(1 – Σj 
ShCj(ti)

ni–Σjdji,   j = 1,2,3. 
 
The estimates of ShCj(ti) are: 

	 ShCj(ti) = dji/ni,    j = 1,2,3,	 (24)

where dji is the observable number of individuals whose 
failure is from Cj at time ti, and ni is the number of 
individuals at risk, just prior to time ti. To estimate the 
unobservable conditional probabilities, the following 
indirect estimators form are used:

	   and	

	 	 (25)

	 Substituting the estimators in (25) into (23), the 
estimated net survival probability becomes:
	

	 	 (26)

where:
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	 When ai = bi =1 for all ti, i.e. S1hC2(ti) and S1hC3(ti) = 
ShC3(ti), the above condition reduces to the assumption used 
by the KMPLE and is reduced to (Appendix I). If at least 
one of the adjustment factors is not equal to at least one of 
the ti’s (ai ≠ 1 and/or bi ≠ 1), then S1hC2(ti) ≠ ShC2(ti)  and/or 
S1hC3(ti) ≠ ShC3(ti). This implies that eliminated C1 do provide 
some information to the NSP through the informative rates 
ai and bi, and the condition is known as the informative 
eliminated risks (IER) situation.
	I f the adjustment factors are equal for different risks 
(i.e.  ai = bi ≠ 1) and is a constant throughout the whole 
lifetime, the condition is known as a constant IER situation. 
However, it is a non-constant situation if the adjustment 
factors have different values over different risks (i.e. ai ≠ bi) for at least one time point and/or if any of the adjustment 
factor has a non-fixed value over time. Thus, for both 
constant and non-constant IER situations, the adjustment 
factor makes the proposed method a useful informative 
tool in estimating the NSP.

Illustrative example

To illustrate the proposed multistate approach, Hoel’s 
(1972) published data set is used. It was a result from a 
laboratory experiment on two groups (germ-free group and 
control group) of male mice which had been subjected to a 
radiation dose of 300r at the age 5 to 6 weeks. The number 
of days until death and the corresponding cause of death 
were recorded for each mice. There were two major causes 
(types of cancer tumour) of death called thymic lymphoma 
(C1) and reticulum cell sarcoma (C2), while other causes 
of death were combined into a single group and referred 
as the third cause (C3). For illustration purpose, only the 
data from germ-free environmental group is used. There 
is no censoring involved because all of the mice died by 
the end of the experiment. 

	 Applying the KMPLE method and the proposed 
multistate formulation on the data set, respectively, we 
obtain estimates of the NSP after the elimination of C3 and 
its corresponding estimated overall net hazard probability 
at times 100, 200, … 1100 days. Let ai and bi be a known 
informative rate provided from eliminated C3 to C1 and 
C2, respectively. Table 1 compares the result from the 
KMPLE method against the proposed multistate method 
with adjustment factors ai = bi = 1. The results showed 
that there was no difference in the estimated NSP and its 
corresponding estimated overall net hazard from using the 
two different approaches. It can also be seen from Table 
1 that the overall net hazard is just simply the sum of the 
crude hazards of the remaining uneliminated risks,  
and  for both methods, i.e.  
	 Under the multistate method, if the adjustment factors 
ai ≠ 1 and bi ≠ 1, then it is implied that IER is present and the 
overall net hazard is not just simply the sum of the crude 
CSHs. This fact is illustrated in Table 2 where the estimated 
NSP and the overall net hazards for which ai ≠ 1 and bi ≠ 
1, are displayed. It can be seen that the estimated NSP and 
overall net hazard by the multistate approach are different 
from those of the KMPLE method. When the values of ai 
and bi are smaller than one (ai < 1 and bi < 1), the estimated 
overall net hazard by the multistate approach is less than 
or equal to those of the KMPLE, while the estimated NSP is 
greater. 
	I n addition, when ai and bi are greater than one (ai 
> 1 and bi > 1), the estimated overall net hazard by the 
multistate approach is greater than or equal to those from 
the KMPLE, while the estimated NSP is smaller. The net 
CSH of C1 and C2 are different from its corresponding crude 
CSH (implying the change of hazard) after the elimination 
of C3, i.e. 

 
(for mathematical proof, 

see Appendix II) and the overall net hazard is not just 
simply the sum of the crude CSH of uneliminated risks 

Table 1. Estimated net survival probabilities,
 

and net overall hazard, after elimination 
of cause 3: The proposed multistate approach and the product limit method

KMPLE † Multistate approach with ai=bi=1

Time, t 
(days) = ‡

§ ¶

≤100
≤200
≤300
≤400
≤500
≤600
≤700
≤800
≤900
≤1000
≤1100

1.00000
0.93902
0.80311
0.76487
0.68709
0.64745
0.53954
0.43511
0.41094
0.34245
0.34245

0.00000
0.06098
0.14474
0.04762
0.10169
0.05769
0.16667
0.19355
0.05556
0.16667
0.00000

1.00000
0.92683
0.76829
0.71951
0.63415
0.58537
0.37805
0.21951
0.07317
0.02439
0.00000

0.00000
0.01220
0.03482
0.04536
0.05294
0.06208
0.16149
0.21560
0.33777
0.31806
0.34245

1.00000
0.93902
0.80311
0.76487
0.68709
0.64745
0.53954
0.43511
0.41094
0.34245
0.34245

0.00000
0.06098
0.14474
0.04762
0.10169
0.05769
0.16667
0.19355
0.05556
0.16667
0.00000

† Kaplan-Meier product limit estimator
‡ estimated crude cause-specific hazard of cause 1 and cause 2
§ estimated survival probability in survivor state
¶ estimated survival probability in cause 3-survivor state
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(i.e.
 

). These implied that the KMPLE 
might under-estimate the survival probability and over-
estimate the hazard rate in the presence of IER C3, i.e. ai = bi 
< 1. However, the KMPLE might over-estimate the survival 
probability and under-estimate the hazard rate when ai = 
bi > 1. 
	 To demonstrate the flexibility of the proposed 
multistate procedure, a non-constant adjustment factor is 
incorporated into it, to take into account a non-constant IER 
situation. For this purpose, consider two assumptions:  (i) 
ai = bi = 0.5 for i:ti ≤ 700 and ai = bi = 1.5 for i:ti > 700, (ii) 
ai = 0.5, ∀i and bi = 1, ∀i. Table 3 shows the estimated NSP 
and its corresponding estimated net overall hazard based 
on the non-constant IER assumptions (i) and (ii) above. It 
can be seen that the estimated overall hazard probability 
is not equal to the sum of the crude hazard, implying a 
change in hazard after the elimination of a cause and that 
the estimated NSP by the proposed procedure is different 
from the KMPLE. Thus, even in the presence of non-constant 
IER situation, the proposed procedure is a more flexible 
method as compared with the product limit method. It is 
a more advanced method that it allows the investigation 
of the change in hazard after the elimination of a cause.

Discussion

The proposed multistate method is shown to be more 
flexible and comprehensive in estimating the NSP as 
compared with the product limit method as it allows for 
various types of IER situation to be considered, including 
constant and non-constant IER situations. The proposed 
procedure produces estimates of the NSP that are more 
appropriate since the change of hazard is considered in 
the estimation procedure. 
	 The adjustment factor that is incorporated in the 
proposed multistate formulation is a flexible parameter 

that defines how deaths among saved individuals (from 
eliminated risks) can happen, after elimination of a 
cause. As it can be varied over time and/or over different 
risk (a non-constant IER) situations, the assumption 
about the deaths among saved individuals can thus, be 
specified accordingly. This makes the proposed method 
more advanced than the product limit method in that, 
uneliminated risks are neither combined nor treated as 
a group of risks with the same behavior over different 
time. In addition, the proposed multistate method allows 
saved individuals to die from not only within the next time 
interval, but also at any time interval after the elimination 
of a cause. Therefore, any underlying elimination effect 
at each time point is not hidden. This facility is an 
advantageous feature of the proposed method over the 
conventional ones. 
	 Furthermore, the proposed multistate method is 
simpler in form and therefore, easier to handle than the 
product limit method. This is because, unlike the product 
limit method, the formulation of the proposed method 
does not involve the multiplicative of the conditional 
sub-survival function (crude cause-specific survival 
probability), which is an improper function. Also, it does 
not assume a fixed structure of the multivariate distribution, 
unlike the conventional LFT approach. Hence, we can avoid 
making strong unverifiable assumption about the nature of 
the failure mechanism.
	 However, when applying the proposed procedure, care 
has to be taken in determining the value of the adjustment 
factor to obtain optimum results. Good background 
information and prior knowledge of the process under 
study is necessary for this task. Currently, the optimal 
value of the adjustment factor is determined subjectively 
by different experts or researchers who have different 
opinions and information about a process. In view of the 
inconsistencies, a standard procedure on how to choose 

Table 2. Estimated net survival probability, and the estimated overall net hazard,  based on the assumptions 
ai=bi=0.5 and ai=bi=1.5 using the proposed multistate method and its comparison to the product limit estimator

time, 
t (days)

The Multistate Approach KMPLE†

Assumed ai=bi=0.5 Assumed ai=bi=1.5

≤100
≤200
≤300
≤400
≤500
≤600
≤700
≤800
≤900
≤1000
≤1100

1.00000
0.93902
0.80400
0.76656
0.69100
0.65277
0.54959
0.45982
0.44095
0.39811
0.39811

0.00000
0.06098
0.14380
0.04656
0.09857
0.05532
0.15806
0.16334
0.04104
0.09716
0.00000

1.00000
0.93902
0.80223
0.76322
0.68338
0.64254
0.53068
0.41320
0.38486
0.29475
0.29475

0.00000
0.06098
0.14568
0.04863
0.10461
0.05977
0.17408
0.22138
0.06858
0.23416
0.00000

1.00000
0.93902
0.80311
0.76487
0.68709
0.64745
0.53954
0.43511
0.41094
0.34245
0.34245

0.00000
0.06098
0.14474
0.04762
0.10169
0.05769
0.16667
0.19355
0.05556
0.16667
0.00000

† Kaplan-Meier product limit estimator
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the value of the adjustment factor need to be developed to 
ensure the robustness of the results. Alternatively, one can 
place a possible range of values to the adjustment factor 
to study the bounds of estimated NSP.
	 Another limitation of the proposed method is that it 
does not cater for the presence of all possible effects of 
covariates. A procedure that allows for adjustments of 
covariates effects is important since competing risks data 
are always accompanied by several covariates. Possible 
research can be done on extensions of the proposed 
multistate approach to the regression problem in the 
examination of the effects of covariate on the net survival 
probability. 

Conclusion

In this paper we proposed a multistate approach to 
estimate the net survival probability (NSP) in a competing 
risks problem. Adjustment factors are incorporated into 
the procedure to account for the presence of informative 
eliminated risks (IER), for both constant and non-constant 
cases. The conventional product limit formulation with 
non-informative eliminated risks assumption is a special 
case of the proposed methodology. Results from applying 
the procedure allow evaluating the change of hazard before 
and after the elimination of a cause, which is contradictory 
to the results from the KMPLE which showed equal hazard. 
In addition, the proposed multistate approach was more 
sensitive to the presence of IER since the independence 
assumption was not made. The underlying impact of 
elimination can be studied in detail by considering each 
interval or time point situation, presenting results that 
otherwise, cannot be given by traditional approaches. 
	 The proposed procedure can be readily extended to 
studies that involve more than three risks, with or without 

the consideration of censoring (both informative and non-
informative), a non-complete (partial) elimination process 
or a more complex multistate elimination study. It can be 
used to study the gain in life after the elimination of a 
cause of death, as well as to study the loss in life if a new 
risk of death should exist. In conclusion, the proposed 
multistate approach is a simple yet advanced estimation 
procedure that can be used as an alternative approach to 
the traditional approaches in estimating the net survival 
probability, especially when a known IER is provided.

Appendix I

From (26), when ai = bi =1, we have:

	
		
		  	
		

	

	
	

		

Table 3. Estimated net survival probability,  and overall net hazard, based on the non-constant informative 
eliminated risk assumption using the proposed multistate method and its comparison to the product limit estimator

time, 
t (days)

The multistate approach
KMPLE†

ai = bi = 1.5 for ti>700
ai = bi= 0.5 for ti ≤700;

ai=0.5; bi=1

≤100
≤200
≤300
≤400
≤500
≤600
≤700
≤800
≤900
≤1000
≤1100

1.00000
0.93902
0.80400
0.76656
0.69100
0.65277
0.54959
0.42662
0.39717
0.30397
0.30397

0.00000
0.06098
0.14380
0.04656
0.09857
0.05532
0.15806
0.22375
0.06904
0.23465
0.00000

1.00000
0.93902
0.80400
0.76656
0.69060
0.65184
0.54389
0.44397
0.41931
0.34942
0.34942

0.00000
0.06098
0.14380
0.04656
0.09909
0.05612
0.16560
0.18371
0.05556
0.16667
0.00000

1.00000
0.93902
0.80311
0.76487
0.68709
0.64745
0.53954
0.43511
0.41094
0.34245
0.34245

0.00000
0.06098
0.14474
0.04762
0.10169
0.05769
0.16667
0.19355
0.05556
0.16667
0.00000

† Kaplan-Meier product limit estimator
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	 Thus, it has been shown that (26) from the proposed 
multistate formulation is reduced to (13) of the Kaplan-
Meier product limit estimator when non-informative 
eliminated risk is assumed, i.e. ai = bi =1.

Appendix II

From (26), we prove that there is change of hazard after 
the elimination of a cause of failure, C3 in the presence 
of informative eliminated risk. After elimination of C3, 
the estimated net survival probability using the proposed 
formulation is given by: 

	

	

	

		

		
and thus, the estimated net cause-specific hazard for each 
C1 and C2 are:

	

where the estimated overall net hazard, 

which is not equal to the sum of the estimated crude cause-
specific hazard of C1 and C2.
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